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Abstract

Significant efforts have been devoted in the last decade to improving molecu-

lar docking techniques to predict both accurate binding poses and ranking

affinities. Some shortcomings in the field are the limited number of standard

methods for measuring docking success and the availability of widely

accepted standard data sets for use as benchmarks in comparing different

docking algorithms throughout the field. In order to address these issues, we

have created a Cross-Docking Benchmark server. The server is a versatile

cross-docking data set containing 4,399 protein-ligand complexes across

95 protein targets intended to serve as benchmark set and gold standard for

state-of-the-art pose and ranking prediction in easy, medium, hard, or very hard

docking targets. The benchmark along with a customizable cross-docking

data set generation tool is available at http://disco.csb.pitt.edu. We further dem-

onstrate the potential uses of the server in questions outside of basic

benchmarking such as the selection of the ideal docking reference structure.

KEYWORD S

affinity ranking, cross-docking, docking, drug discovery, pose prediction, small molecule,

virtual screening

1 | INTRODUCTION

Despite increasing acceptance and utilization of molecu-
lar docking toward problems such as de novo drug dis-
covery and lead optimization, significant shortcomings
exist in the assessment of docking success, particularly in
the lack of unified standards.1,2 The lack of a widely
accepted standard for calculating docking successes and
the limited number of available benchmarking data sets
to accurately compare different techniques has led to
confusion in the field when it comes to determining
success. While resources such as the Community
Structure-Activity Resource (CSAR)3–5 and Drug Design
Data Resource (D3R)6–9 have begun to address issues per-

taining to the lack of high-quality training data set, there
is still much room for improvement.3,4

When it comes to determining the success of a dock-
ing algorithm on a particular data set, several reasonable
approaches may be employed. The ability to properly
reconstruct a ligand's known binding position may be
one of the most highly accepted measures of docking suc-
cess.10,11 Alternatively, the accurate prediction of binding
affinity may be selected as the criterion for dock assess-
ment; however, the affinity may only need to be accurate
enough to differentiate known binders from known
decoys.2,10,11 Identification of the original binding recep-
tor when ligands are docked to different proteins may be
another measure.

While some data sets exist to fit these means of assess-
ment, there are not yet sufficiently scoped data sets forShayne D. Wierbowski and Bentley M. Wingert contributed equally.
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each of them. The Database of Useful Decoys-Enhanced
(DUD-E) serves as one such standardized data set.2 How-
ever, DUD-E is specialized to retrospective enrichment of
known versus decoy binders and is not suited for correct
binding conformation prediction studies. The Astex Non-
native set12 was created to focus on cross-docking. How-
ever, it was curated from existing crystal structures on
the Protein Data Bank (PDB)13 as of 2008 and it is out-
dated (e.g., very few DUD-E targets). Redocking refers to
the docking of a ligand to its holo crystal structure. In
redocking, a ligand is extracted from a protein-ligand
crystal and docked to the same protein receptor. These
are significantly easier cases to solve due to the fact that
thereceptor structure is in its optimal conformation.
Cross-docking extracts a ligand from a co-crystal but
docks it to another conformation of the same protein
rather than the ligand's holo structure. Thus, the problem
is significantly more challenging and more analogous to
the type of de novo binding predictions that molecular
docking algorithms are intended for.

In situations where cross-docking is properly carried
out, two problems emerge. Either individual labs must
generate their own cross-docking data sets ad hoc10 or
they must rely on the sparse data sets that are avail-
able.3,4 The generation of ad hoc cross-docking data sets
proves to be a tedious task and provides no meaningful
comparison to studies carried out by others in the field.
Reliance on pre-existing data sets falls short because
they often do not encompass a wide enough rage of pro-
teins or ligand to provide a reliable assessment. Further-
more, these data sets often require a number of
processing steps by the user before docking can be
carried out.

To this end, we set about to create a new Cross-
Docking Benchmark server that hopefully will be used to
generate a suitable gold-standard to compare different
methodologies in a reproducible manner. The benchmark
includes a subset of targets from the DUD-E data set and
encompasses 4,399 ligand structures for docking. Efforts
have been made to make the server immediately ready for
docking upon download in order to provide the smoothest
docking experience. This curated data set is suitable for
use when performing new evaluations of tools and
workflows and also provides a quality baseline of docking
performance to a rigid receptor for comparison. The auto-
mated docking and ranking strategies used to generate
these poses have been validated in community-wide pro-
spective evaluations and utilize only publicly available
tools5,9,14 that have consistently predicted top-of-the-line
results for both pose prediction and affinity ranking. We
also provide the workflow used to create the benchmark
in order to facilitate the creation of cross-docking data sets
for any target not included herein. Both the server and the

cross-docking generation tools are freely available at
http://disco.csb.pitt.edu.

Previous studies have shown that one of the biggest
factors in the success of a molecular docking prediction is
the choice of the ideal receptor structure to use as the
docking reference.5, 9, 14 Here, we address this problem
using the broad set of targets in the Cross-Docking
Benchmark to study how different methods of choosing
the reference receptor structure affect overall docking
success. Specifically, we addressed previous findings that
suggested a partial correlation between the binding
pocket volume of a receptor and its effectiveness as a
docking reference.5 We compare the overall success
under the average case, selection based on DUD-E refer-
ence, selection based on pocket volume, and picking the
best available receptor as identified by our workflow.

2 | MATERIALS AND METHODS

2.1 | Selecting the cross-docking
benchmark set of targets

The benchmark was designed around a subset of the tar-
gets described in DUD-E.2 This set has been broadly use
in similar molecular docking problems, it consists on a
functionally diverse set of protein targets—including
kinases, proteases, signaling receptors, and other
enzymes—and thus it is appropriate for our uses. DUD-E
provides, as a representative of each target, a single X-ray
structure and cocrystalized ligand carefully selected for
docking, each of which was downloaded and used to seed
our benchmark generation algorithm as described below.

2.2 | Benchmark generation algorithm

Generation of the data set was completed using custom
python scripts. The goal was to not only provide a set of
PDB structures that could be used in cross-docking exper-
iments, but to process these structures so that they would
be docking ready. The final set is available for free down-
load at http://disco.csb.pitt.edu. Although it was gener-
ated automatically, manual curation of the data was
performed to ensure correct processing.

In order to identify the set of structures relevant for
each target, the reference structure was used to search for
the set of 90% homologous structures using the RSCB
PDB's RESTful sequence cluster service.13 Each candidate
structure was parsed to determine what ligands it con-
tained, and ligand affinity data (i.e., IC50 values used for
ranking prediction) for each ligand was obtained where
available by consulting The Binding Database,15 The
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PDBBind Database,16,17 and Binding MOAD.18,19 Those
structures which contained at least one ligand were
downloaded and separated into distinct protein and
ligand(s) files using the PyMol20 API (Schrödinger).

In order to process these structures, and prepare them
for docking, it was necessary to align each structure to the
reference and to identify the ligand that should be used in
docking. Using PyMol, each chain of the candidate struc-
ture was successively aligned to the reference protein to
identify the chain that both best aligned to the reference
and placed a candidate ligand near the reference ligand. If
alignment was not possible—either because the root-
mean-square deviation (RMSD) of the protein alignment
was greater than 4.0 Å or because no candidate ligand was
within 4.0 Å of the reference ligand—the structure was
removed because these misaligned structures would not
provide accurate “known” ligand positions for determina-
tion of RMSD of predicted docked poses. Structures in
which multiple ligands appeared near the binding
pocket—within 5.0 Å of the selected candidate ligand—
were also removed because the stable binding in these
structures may rely on ligand–ligand interactions that
would not be represented in molecular docking predictions
between the protein and single ligand. To ensure most effi-
cient docking on the user's end, once the candidate ligand
that best fit the reference binding pocket was identified,
the candidate protein structure was trimmed to only those
chains directly interacting with the ligand—determined as
those chains within 10.0 Å of the ligand. From the
trimmed protein, the other ligand cofactors and crystal
waters within 5.0 Å were saved separately.

The above methodology results in a highly curated set
of docking ready protein and ligand structures. The bench-
mark set is presented as a collection of directories rep-
resenting each target. Within each target directory, PDB
files containing the protein, ligand, other molecules, and
water molecules for each structure are retained in a subdi-
rectory. Additionally, four informational logs are pres-
ented. The “pdbs_kept.txt” log contains a list of the PDB
id for the final set of structures. The “pdbs_considered.txt”
log contains a list of those PDB IDs which were removed
from the set and the reason for their removal. The “lig-
map2.txt” log contains a map of PDB ID to ligand ID since
for future convenience, the ligand identifiers were all
renamed to “LIG.” The “lig_affinity.txt” contains the avail-
able ligand binding affinity data available for each ligand.

2.3 | Using benchmark generation to a
customizable script

The scripts used to generate our server are provided as a
generalized tool allowing users to define their own

docking data sets around specified targets of interest.
This custom generation tool is available at http://disco.
csb.pitt.edu/Generate.php. The generation methodology
is as described above, except that candidate structure are
selected from user provided seed receptor PDB structure
and specified ligand identifier. The user specified PDB
structure is downloaded from the RSCB PDB and the
specified ligand is extracted. If no specific chains are indi-
cated in the user input, the first instance of the ligand
molecule is extracted, and the protein structure is
trimmed to only those chains within 10.0 Å. If specific
chains are indicated, the ligand and or protein chains are
extracted and additional protein chains interacting with
the ligand are added as necessary. Results are emailed to
the user as soon as they are available.

2.4 | The cross-docking benchmark

In order to establish a fixed cross-docking standard suc-
cess rate to be used as the benchmark to “beat,” cross-
docking predictions were made for all targets using
smina11 with default settings. The selection of reference
protein structure to cross-dock to was done by selecting
the structure that provided the maximal docking effi-
ciency as previously described.5,9,14 From smina's cross-
docking predictions, the RMSD between the “known”
position of the ligand and each of the predicted poses
was calculated using Open Babel's root-mean-square
method.21 Docking success rate was determined as the
percentage of predicted dock poses less than 2.0 Å, and
statistics is provided for the best Vina scored prediction,22

and for the lowest RMSD pose within the best five ranked
predictions. A final benchmark for each target is available
for download. Based on these results, each target was
classified as an easy, medium, hard, or very hard docking
target (threshold at >75%, >50%, >25%, and <25%,
respectively).

2.5 | Pocket volume calculation

Pocket volume calculations were carried out using
fdpocket.23,24

3 | RESULTS

We present here a Cross-Docking Benchmark intended
to serve as a useful tool in molecular docking analyses.
The server was created by starting from selected targets
in DUD-E,2 which was created for testing docking
methods. From these 102 DUD-E references, PDB
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structures homologous to each target were identified,
screened for inclusion of a ligand compound, aligned to
the DUD-E reference, and processed to prepare the struc-
tures for molecular docking. The benchmark consists of
95 of the DUD-E targets and a total of 4,399 ligands for
docking, with an average of 46 ligands available in each
target. A breakdown of the targets included is shown in
Table S1. The Targets landing page is shown in Figure 1.

The construction of this data set provides a fast and
easy way to assess molecular docking algorithms against
a fixed standard. Whereas previously these standard
docking sets were few and far between or impractically
small; Our benchmark provides a simple, preprocessed
docking experience. As a gold standard for cross-docking
and ranking, a comprehensive docking across every pro-
tein structure for each target was performed and the

overall sampling success rate for each was determined.
Cross-docking is reported using the optimal receptor
structure for each target. The optimal receptor for the
pose prediction was the structure that obtained the larger
number of ≤2.0 Å RMSD to the known position of the
ligand. Similarly, the optimal receptor for ranking affinity
predictions was the structure that had the best Spearman
correlation between Vina score22 function and IC50's for
each target. The average RMSD of the best ligand pose
for each target was also determined. These benchmark
statistics are provided per target on the website. We
found that using the aforementioned thresholds, there
are 36 Easy, 44 Medium, 10 Hard, and 5 Very Hard tar-
gets using Top five pose prediction. When looking at top
1 pose prediction, we found 15 Easy, 52 Medium, 9 Hard,
and 19 Very Hard targets. Additionally, for targets with

FIGURE 1 Shown are screenshots of the two main functional pages of the Cross-Docking Benchmark webserver. (a) Landing view of

the Targets page. Split into results of docking and evaluated by: % successful pose in top 5 poses (top 5 RMSD), % successful pose in top

1 pose (top 1 RMSD), and Spearman correlation of predicted versus experimental affinity values (top 1 ranking). (b) Landing view of

Generate page. This is where users can submit a cocrystal structure and have the server return homologous structures with small molecules

in the same binding pocket for their own uses. RMSD, root-mean-square deviation

FIGURE 2 Comparison of two measures of docking success; the percentage of compounds with successful pose predictions

(RMSD < 2 Å) on the x axis, and the median RMSD in Å of the first pose generated by smina on the y axis. Each dot represents one of the

targets in the Benchmark database and is colored by their assigned difficulty label. (a) Top 1 pose. (b) Best of top 5 generated poses. RMSD,

root-mean-square deviation
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ligands with experimental affinity data, we found a
median Spearman correlation of 0.48, which would be at
or near the top of past D3R affinity ranking challenges.7,8

The relationship between a target's median first pose
RMSD for all compounds and its amenity to overall suc-
cess at docking is shown in Figure 2. While both are rele-
vant measures of a target's amenity to docking studies,
we believe a target's success rate is the more meaningful
(and less prone to outliers) metric. Hence, we use it for
our categorization of target docking difficulty.

The docking results indicated that the selection of the
correct receptor can have a significant impact on docking
performance. Specifically, comparisons were made
between overall docking performance under four recep-
tor selection criteria; (a) random selection, (b) using the
DUD-E receptor, (c) using the receptor with the greatest
binding pocket volume, and (d) using the actual best
receptor. Results are presented in Figure 3. The discrep-
ancy between random receptor selection and best recep-
tor selection of nearly 30% highlights the importance of
proper receptor selection.

As previously shown,5 there seems to be a correlation
between pocket volume in a receptor and the ease of
docking. The receptor selection based on pocket volume
demonstrates nearly a 10% increase in overall docking
performance, suggesting that pocket volume could be a
reasonable measure for selecting the receptor with better
than average performance.

In order to further evaluate the significance of pocket
volume in identifying the best receptor structure, pocket
volume was plotted against the overall sampling success
rate for each receptor. As Figure 4 demonstrates, although

FIGURE 3 Comparing various methods of selecting the

receptor structure in a cross-docking prediction. Four methods,

random average (41.1%), DUD-E reference (44.1%), largest pocket

volume (49.9%), and best (68.9%) were compared for overall

docking performance based on sampling of low RMSD poses.

Significant improvements were shown when selecting the best

receptor compared with the expected average from random

selection. These findings demonstrate the importance of proper

receptor selection prior to docking. RMSD, root-mean-square

deviation

FIGURE 4 Consideration of the correlation between pocket volume of the receptor and its success in cross-docking. Although selection

of receptor based on pocket volume produced above average performance, it is clearly not the case that pocket volume serves as a

comprehensive indicator of a receptors performance as a docking reference. While targets such as ESR1 (estrogen receptor) (a) have a strong

positive correlation, there are also targets such as GRIA2 (glutamate receptor 2) (c) that have a weak to strong negative correlation. Most

targets are like CAH2 (carbonic anhydrase II) (b) and exhibit either no or an extremely weak correlation between pocket volume and

docking success
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the pocket volume can in some instances be a strong indi-
cator of the success of docking, this is far from a rule.
Some targets such as ESR1 have strong positive correlation
between pocket volume and sampling success (R2 = 0.68),
while other targets have weak or even negative correla-
tion. Indeed, the overall correlation between pocket vol-
ume and sampling success was found to be weakly
negative if anything. However, the fact that some receptors
can easily be docked to due to large pocket volume while
others cannot suggests that a number of factors play a role
in the ease of docking to a receptor and that pocket vol-
ume may nonetheless be one of them to consider.

We also investigated if receptors best suited for pose
prediction were also well suited for predicting affinity
ranking. It would seem intuitive that the two would be
related, though in previous blinded docking studies7,8,14

this has been observed to not be the case in a small num-
ber of targets which in many cases were structurally simi-
lar (i.e., kinases). With the larger, more diverse set of
targets in the Cross-Docking Benchmark database, we
can see that successful pose prediction and successful
ligand affinity ranking do not seem to be correlated
(Figure 5). This seems to validate our earlier conclu-
sion14,25 as well as emphasize the observation that recep-
tor choice is a vitally important part of a successful drug

discovery pipeline and should be undertaken separately
for different goals.

4 | DISCUSSION

One of the major requirements in the assessment of vari-
ous approaches to molecular docking is the existence of a
standardized benchmark to compare docking successes.
However, multiple criteria for judging the success of
molecular docking exist, and there are not yet standard
benchmarks representing all of them. For example,
DUD-E presents a thorough data set to be used as a
benchmark for molecular docking based on enrichment
in retrospective recall of known binders compared to
known decoys.2 While DUD-E focuses on evaluating
accurate prediction of binding affinity namely accurate
scoring, an equally important component in molecular
docking is the ability to accurately generate predicted
poses representative of the known binding position
namely sampling. The Astex Non-native set,12 a currently
available data set similarly built to focus on cross-docking
evaluation, is limited in scale (Table 1). Of note, since
ranking is a major challenge in small molecule docking,
having an average of three times more structures/ligands
per target makes the overall success rates a poor compari-
son between the two sets.

To this end, we present our Benchmark, as a sizable
data set for easy cross-docking testing. The webserver
encompasses 95 unique protein targets averaging
46 ligands per target, resulting in 4,399 highly curated
structures immediately ready for docking. Furthermore,
these structures have each been meaningfully processed
in order to facilitate the docking experience and calcula-
tion of RMSD between the known and predicted poses.
Before this effort, assessment of the success of molecular
docking algorithms based on pose recall required either;
(a) reliance on significantly limited data sets for cross-
docking, (b) reliance on redocking studies, or (c) manual
generation of a cross-docking data set specific for in
house use. Each of these solutions leaves much to be
desired. Contrary to other sets, here we provide the

FIGURE 5 Comparison between a target's ability to generate

successful pose predictions (x axis) and successfully rank

compounds by predicted affinity (y axis)

TABLE 1 Comparison of Cross-Docking Benchmark & existing benchmark set

Data set
Number
of targets

Number of
structures

Average #
structures
per target

Median # of
structures
per target

Average first
pose success rate

Average best
pose success rate

Cross-docking benchmark 95 4,399 46 19 50% 65%*

Astex 65 1,112 17 6 61% 72%

Note: High-level comparison between Cross-Docking Benchmark data set and Astex Non-native set. Success rate calculated as described in Verdonk et al.12 Our
Benchmark focuses on top 1 or top 5 subsets of generated poses as opposed to looking at every generated pose, requiring docking programs to surface

high-quality poses near the top.
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largest set of available targets to date, in a standardized
format that is ready for immediate docking with tools
used elsewhere in the field. The docking data set was
generated by automated methods with a rigid receptor
structure and using freely available tools. The methods
used have been previously described and shown to be
top-of-the-line in community-wide prospective docking
challenges.5,9,14

The use of the DUD-E database as the source for tar-
gets ensures that a wide range of protein families are
included in the data set for cross-docking analysis. And,
using our customizable cross-docking data set generation
script one can easily generate additional target reference
structures. This feature will also allow for quick and easy
updating of the Cross-Docking Benchmark data set with
new targets of interest to researchers. The server provides
a solution to each of the difficulties in molecular docking
analyses based on pose recall. The structure of data as a
series of targets containing clearly named and separated
protein and ligand PDB files facilitates docking. Finally, the
docking performance analysis carried out and fully avail-
able on the server provides a clear benchmark for small
molecule docking on a rigid receptor. Most importantly, the
use of this benchmark in future studies will make possible
direct comparison of diverse molecular docking approaches.

Our consideration on the selection of an optimal
receptor structure for cross-docking demonstrates the
need to carefully consider the choice of receptor in
instances where multiple receptor structures are avail-
able. Although studies have identified this problem in the
past,5,9,14 we present here one of the first large scale con-
siderations of the overall effect of receptor selection on
cross-docking success (Figure 2). We show a nearly 30%
improvement in docking results when the best receptor is
correctly identified as opposed to when receptors are
selected at random (Figure 3).

If receptor selection has such a significant impact on
ease of docking, then the next question becomes the
proper identification of which features matter in receptor
selection. Some findings have suggested that the binding
pocket volume may be one important feature.5 Our con-
sideration of pocket volume as a selection criterion is
consistent with these findings. However, our larger
assessment of pocket volume to docking success correla-
tion on a per target basis demonstrates that it is clearly
not the best or only factor involved (Figure 3). We feel
that this is an important problem, and data sets like ours
could provide a doorway to further approaches to identify
the meaningful factors at play.

One feature of webserver that makes it an enticing
gold-standard benchmark is the high range in difficulty
of docking predictions over its targets. Docking success
rates vary from 0 to 100% for both top 1 and top

5 measurements, and ranking correlations vary from
−1.0 to 1.0 Spearman ρ. This factor should become criti-
cal in future assessments of small-molecule docking
workflows. While we expect the Cross-Docking Bench-
mark to serve as a means of comparing docking algo-
rithms, the bulk of data made available by here will also
allow for analysis of the successes and shortcomings of
individual algorithms on particular types of structures.
Moreover, the existence of an automated gold-standard
data set will aid development of automated docking
methods which are able to improve upon current best
predictions, especially of the difficult “Hard” and “Very
Hard” targets.
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